Equation linéaire


Pour tout $a \in \mathbb{R}^*$, $b \in \mathbb{R}$, $x \in \mathbb{R}$, $$ax + b = 0 \iff x = -\frac{b}{a}$$


Passer

Suivante

Utilise LaTeX dans tes cartes

Quand tu crées une carte, insère ta formule LaTeX entre $ (linéaire) ou $$ (bloc) pour en faire le rendu. Par exemple, le code suivant va donner cette carte :

Pour tout $a \in \mathbb{R}^*$, $b \in \mathbb{R}$, $x \in \mathbb{R}$, $$ax + b = 0 \iff x = -\frac{b}{a}$$

Liste des symboles LaTeX

Grec

\alpha $\alpha$
\beta $\beta$
\gamma $\gamma$
\delta $\delta$
\epsilon $\epsilon$
\varepsilon $\varepsilon$
\zeta $\zeta$
\eta $\eta$
\theta $\theta$
\vartheta $\vartheta$
\iota $\iota$
\kappa $\kappa$
\lambda $\lambda$
\mu $\mu$
\nu $\nu$
\xi $\xi$
o $o$
\pi $\pi$
\varpi $\varpi$
\rho $\rho$
\varrho $\varrho$
\sigma $\sigma$
\varsigma $\varsigma$
\tau $\tau$
\upsilon $\upsilon$
\phi $\phi$
\varphi $\varphi$
\chi $\chi$
\psi $\psi$
\omega $\omega$
\Gamma $\Gamma$
\Delta $\Delta$
\Theta $\Theta$
\Lambda $\Lambda$
\Xi $\Xi$
\Pi $\Pi$
\Sigma $\Sigma$
\Upsilon $\Upsilon$
\Phi $\Phi$
\Psi $\Psi$
\Omega $\Omega$

Délimiteurs

( $($
) $)$
listOf( $listOf($
) $)$
\{ $\{$
\} $\}$
\langle $\langle$
\rangle $\rangle$
\vert $\vert$
\Vert $\Vert$
\lfloor $\lfloor$
\rfloor $\rfloor$
\lceil $\lceil$
\rceil $\rceil$
\backslash $\backslash$
/ $/$

Grands délimiteurs

\lgroup $\lgroup$
\rgroup $\rgroup$
\lmoustache $\lmoustache$
\rmoustache $\rmoustache$
\arrowvert $\arrowvert$
\Arrowvert $\Arrowvert$
\bracevert $\bracevert$

Relations binaires

\lt $\lt$
\gt $\gt$
\le $\le$
\ge $\ge$
\ll $\ll$
\gg $\gg$
\prec $\prec$
\succ $\succ$
\preceq $\preceq$
\succeq $\succeq$
= $=$
\equiv $\equiv$
\sim $\sim$
\simeq $\simeq$
\approx $\approx$
\cong $\cong$
\subset $\subset$
\subseteq $\subseteq$
\supset $\supset$
\supseteq $\supseteq$
\sqsubset $\sqsubset$
\sqsupset $\sqsupset$
\sqsubseteq $\sqsubseteq$
\sqsupseteq $\sqsupseteq$
\in $\in$
\owns $\owns$
\propto $\propto$
\Join $\Join$
\bowtie $\bowtie$
\vdash $\vdash$
\dashv $\dashv$
\models $\models$
\mid $\mid$
\parallel $\parallel$
\perp $\perp$
\smile $\smile$
\frown $\frown$
\asymp $\asymp$
: $:$
\notin $\notin$
\ne $\ne$

Opérateurs binaires

+ $+$
- $-$
\pm $\pm$
\mp $\mp$
\triangleleft $\triangleleft$
\triangleright $\triangleright$
\cdot $\cdot$
\div $\div$
\times $\times$
\setminus $\setminus$
\star $\star$
\cup $\cup$
\cap $\cap$
\ast $\ast$
\sqcup $\sqcup$
\sqcap $\sqcap$
\circ $\circ$
\vee $\vee$
\wedge $\wedge$
\bullet $\bullet$
\oplus $\oplus$
\ominus $\ominus$
\diamond $\diamond$
\odot $\odot$
\oslash $\oslash$
\otimes $\otimes$
\uplus $\uplus$
\bigcirc $\bigcirc$
\amalg $\amalg$
\bigtriangleup $\bigtriangleup$
\bigtriangledown $\bigtriangledown$
\dagger $\dagger$
\lhd $\lhd$
\rhd $\rhd$
\ddagger $\ddagger$
\unlhd $\unlhd$
\unrhd $\unrhd$
\wr $\wr$

Opérateurs n-aires

\sum $\sum$
\prod $\prod$
\coprod $\coprod$
\bigcup $\bigcup$
\bigcap $\bigcap$
\bigsqcup $\bigsqcup$
\biguplus $\biguplus$
\bigvee $\bigvee$
\bigwedge $\bigwedge$
\int $\int$
\iint $\iint$
\iiint $\iiint$
\oint $\oint$
\bigodot $\bigodot$
\bigoplus $\bigoplus$
\bigotimes $\bigotimes$

Flèches

\gets $\gets$
\longleftarrow $\longleftarrow$
\to $\to$
\longrightarrow $\longrightarrow$
\leftrightarrow $\leftrightarrow$
\longleftrightarrow $\longleftrightarrow$
\Leftarrow $\Leftarrow$
\Longleftarrow $\Longleftarrow$
\Rightarrow $\Rightarrow$
\Longrightarrow $\Longrightarrow$
\Leftrightarrow $\Leftrightarrow$
\Longleftrightarrow $\Longleftrightarrow$
\mapsto $\mapsto$
\longmapsto $\longmapsto$
\hookleftarrow $\hookleftarrow$
\hookrightarrow $\hookrightarrow$
\leftharpoonup $\leftharpoonup$
\rightharpoonup $\rightharpoonup$
\leftharpoondown $\leftharpoondown$
\rightharpoondown $\rightharpoondown$
\rightleftharpoons $\rightleftharpoons$
\iff $\iff$
\uparrow $\uparrow$
\downarrow $\downarrow$
\updownarrow $\updownarrow$
\Uparrow $\Uparrow$
\Downarrow $\Downarrow$
\Updownarrow $\Updownarrow$
\nearrow $\nearrow$
\searrow $\searrow$
\swarrow $\swarrow$
\nwarrow $\nwarrow$
\leadsto $\leadsto$

Flèches sur les symboles

\hat{a} $\hat{a}$
\check{a} $\check{a}$
\tilde{a} $\tilde{a}$
\grave{a} $\grave{a}$
\dot{a} $\dot{a}$
\ddot{a} $\ddot{a}$
\bar{a} $\bar{a}$
\vec{a} $\vec{a}$
\acute{a} $\acute{a}$
\breve{a} $\breve{a}$
\mathring{a} $\mathring{a}$
\widehat{ABC} $\widehat{ABC}$
\widetilde{ABC} $\widetilde{ABC}$
\overrightarrow{AB} $\overrightarrow{AB}$
\overleftarrow{AB} $\overleftarrow{AB}$
\overleftrightarrow{AB} $\overleftrightarrow{AB}$
\underrightarrow{AB} $\underrightarrow{AB}$
\underleftarrow{AB} $\underleftarrow{AB}$
\underleftrightarrow{AB} $\underleftrightarrow{AB}$

Autres

\dots $\dots$
\cdots $\cdots$
\vdots $\vdots$
\ddots $\ddots$
\hbar $\hbar$
\imath $\imath$
\jmath $\jmath$
\ell $\ell$
\Re $\Re$
\Im $\Im$
\aleph $\aleph$
\wp $\wp$
\forall $\forall$
\exists $\exists$
\mho $\mho$
\partial $\partial$
\prime $\prime$
\emptyset $\emptyset$
\infty $\infty$
\nabla $\nabla$
\triangle $\triangle$
\Box $\Box$
\Diamond $\Diamond$
\bot $\bot$
\top $\top$
\angle $\angle$
\surd $\surd$
\diamondsuit $\diamondsuit$
\heartsuit $\heartsuit$
\clubsuit $\clubsuit$
\spadesuit $\spadesuit$
\lnot $\lnot$
\flat $\flat$
\natural $\natural$
\sharp $\sharp$

Polices d'écriture

\mathbb{RQSZ} $\mathbb{RQSZ}$
\mathcal{RQSZ} $\mathcal{RQSZ}$
\mathfrak{RQSZ} $\mathfrak{RQSZ}$
\mathrm{3x^2 \in R} $\mathrm{3x^2 \in R}$
\mathit{3x^2 \in R} $\mathit{3x^2 \in R}$
\mathbf{3x^2 \in R} $\mathbf{3x^2 \in R}$
\mathsf{3x^2 \in R} $\mathsf{3x^2 \in R}$
\mathtt{3x^2 \in R} $\mathtt{3x^2 \in R}$

Formattage

\frac{a}{b} $\frac{a}{b}$
a^{b} $a^{b}$
a_{b} $a_{b}$
\binom{a}{b} $\binom{a}{b}$

Matrices

\begin{matrix}
1 & 2 & 3\\
a & b & c
\end{matrix}
$\begin{matrix}
1 & 2 & 3\\
a & b & c
\end{matrix}$
\begin{pmatrix}
1 & 2 & 3\\
a & b & c
\end{pmatrix}
$\begin{pmatrix}
1 & 2 & 3\\
a & b & c
\end{pmatrix}$
\begin{bmatrix}
1 & 2 & 3\\
a & b & c
\end{bmatrix}
$\begin{bmatrix}
1 & 2 & 3\\
a & b & c
\end{bmatrix}$
\begin{Bmatrix}
1 & 2 & 3\\
a & b & c
\end{Bmatrix}
$\begin{Bmatrix}
1 & 2 & 3\\
a & b & c
\end{Bmatrix}$
\begin{vmatrix}
1 & 2 & 3\\
a & b & c
\end{vmatrix}
$\begin{vmatrix}
1 & 2 & 3\\
a & b & c
\end{vmatrix}$
\begin{Vmatrix}
1 & 2 & 3\\
a & b & c
\end{Vmatrix}
$\begin{Vmatrix}
1 & 2 & 3\\
a & b & c
\end{Vmatrix}$

Carte d'exemple



Passer

Suivante

Essaye LaTeX dans le navigateur

Entre un peu de code pour voir ce que ça donnerait sur une carte :

Tu te sens prêt à créer des cartes ?

Commence à écrire en téléchargeant l'application maintenant !

Get it on the App Store Get it on Google Play