Equation linéaire
Pour tout $a \in \mathbb{R}^*$, $b \in \mathbb{R}$, $x \in \mathbb{R}$, $$ax + b = 0 \iff x = -\frac{b}{a}$$
Passer
Suivante
Utilise LaTeX dans tes cartes
Quand tu crées une carte, insère ta formule LaTeX entre $
(linéaire) ou $$
(bloc) pour en faire le rendu. Par exemple, le code suivant va donner cette carte :
Pour tout $a \in \mathbb{R}^*$, $b \in \mathbb{R}$, $x \in \mathbb{R}$,
$$ax + b = 0 \iff x = -\frac{b}{a}$$
Liste des symboles LaTeX
Grec
\alpha
$\alpha$
\beta
$\beta$
\gamma
$\gamma$
\delta
$\delta$
\epsilon
$\epsilon$
\varepsilon
$\varepsilon$
\zeta
$\zeta$
\eta
$\eta$
\theta
$\theta$
\vartheta
$\vartheta$
\iota
$\iota$
\kappa
$\kappa$
\lambda
$\lambda$
\mu
$\mu$
\nu
$\nu$
\xi
$\xi$
o
$o$
\pi
$\pi$
\varpi
$\varpi$
\rho
$\rho$
\varrho
$\varrho$
\sigma
$\sigma$
\varsigma
$\varsigma$
\tau
$\tau$
\upsilon
$\upsilon$
\phi
$\phi$
\varphi
$\varphi$
\chi
$\chi$
\psi
$\psi$
\omega
$\omega$
\Gamma
$\Gamma$
\Delta
$\Delta$
\Theta
$\Theta$
\Lambda
$\Lambda$
\Xi
$\Xi$
\Pi
$\Pi$
\Sigma
$\Sigma$
\Upsilon
$\Upsilon$
\Phi
$\Phi$
\Psi
$\Psi$
\Omega
$\Omega$
Délimiteurs
(
$($
)
$)$
listOf(
$listOf($
)
$)$
\{
$\{$
\}
$\}$
\langle
$\langle$
\rangle
$\rangle$
\vert
$\vert$
\Vert
$\Vert$
\lfloor
$\lfloor$
\rfloor
$\rfloor$
\lceil
$\lceil$
\rceil
$\rceil$
\backslash
$\backslash$
/
$/$
Grands délimiteurs
\lgroup
$\lgroup$
\rgroup
$\rgroup$
\lmoustache
$\lmoustache$
\rmoustache
$\rmoustache$
\arrowvert
$\arrowvert$
\Arrowvert
$\Arrowvert$
\bracevert
$\bracevert$
Relations binaires
\lt
$\lt$
\gt
$\gt$
\le
$\le$
\ge
$\ge$
\ll
$\ll$
\gg
$\gg$
\prec
$\prec$
\succ
$\succ$
\preceq
$\preceq$
\succeq
$\succeq$
=
$=$
\equiv
$\equiv$
\sim
$\sim$
\simeq
$\simeq$
\approx
$\approx$
\cong
$\cong$
\subset
$\subset$
\subseteq
$\subseteq$
\supset
$\supset$
\supseteq
$\supseteq$
\sqsubset
$\sqsubset$
\sqsupset
$\sqsupset$
\sqsubseteq
$\sqsubseteq$
\sqsupseteq
$\sqsupseteq$
\in
$\in$
\owns
$\owns$
\propto
$\propto$
\Join
$\Join$
\bowtie
$\bowtie$
\vdash
$\vdash$
\dashv
$\dashv$
\models
$\models$
\mid
$\mid$
\parallel
$\parallel$
\perp
$\perp$
\smile
$\smile$
\frown
$\frown$
\asymp
$\asymp$
:
$:$
\notin
$\notin$
\ne
$\ne$
Opérateurs binaires
+
$+$
-
$-$
\pm
$\pm$
\mp
$\mp$
\triangleleft
$\triangleleft$
\triangleright
$\triangleright$
\cdot
$\cdot$
\div
$\div$
\times
$\times$
\setminus
$\setminus$
\star
$\star$
\cup
$\cup$
\cap
$\cap$
\ast
$\ast$
\sqcup
$\sqcup$
\sqcap
$\sqcap$
\circ
$\circ$
\vee
$\vee$
\wedge
$\wedge$
\bullet
$\bullet$
\oplus
$\oplus$
\ominus
$\ominus$
\diamond
$\diamond$
\odot
$\odot$
\oslash
$\oslash$
\otimes
$\otimes$
\uplus
$\uplus$
\bigcirc
$\bigcirc$
\amalg
$\amalg$
\bigtriangleup
$\bigtriangleup$
\bigtriangledown
$\bigtriangledown$
\dagger
$\dagger$
\lhd
$\lhd$
\rhd
$\rhd$
\ddagger
$\ddagger$
\unlhd
$\unlhd$
\unrhd
$\unrhd$
\wr
$\wr$
Opérateurs n-aires
\sum
$\sum$
\prod
$\prod$
\coprod
$\coprod$
\bigcup
$\bigcup$
\bigcap
$\bigcap$
\bigsqcup
$\bigsqcup$
\biguplus
$\biguplus$
\bigvee
$\bigvee$
\bigwedge
$\bigwedge$
\int
$\int$
\iint
$\iint$
\iiint
$\iiint$
\oint
$\oint$
\bigodot
$\bigodot$
\bigoplus
$\bigoplus$
\bigotimes
$\bigotimes$
Flèches
\gets
$\gets$
\longleftarrow
$\longleftarrow$
\to
$\to$
\longrightarrow
$\longrightarrow$
\leftrightarrow
$\leftrightarrow$
\longleftrightarrow
$\longleftrightarrow$
\Leftarrow
$\Leftarrow$
\Longleftarrow
$\Longleftarrow$
\Rightarrow
$\Rightarrow$
\Longrightarrow
$\Longrightarrow$
\Leftrightarrow
$\Leftrightarrow$
\Longleftrightarrow
$\Longleftrightarrow$
\mapsto
$\mapsto$
\longmapsto
$\longmapsto$
\hookleftarrow
$\hookleftarrow$
\hookrightarrow
$\hookrightarrow$
\leftharpoonup
$\leftharpoonup$
\rightharpoonup
$\rightharpoonup$
\leftharpoondown
$\leftharpoondown$
\rightharpoondown
$\rightharpoondown$
\rightleftharpoons
$\rightleftharpoons$
\iff
$\iff$
\uparrow
$\uparrow$
\downarrow
$\downarrow$
\updownarrow
$\updownarrow$
\Uparrow
$\Uparrow$
\Downarrow
$\Downarrow$
\Updownarrow
$\Updownarrow$
\nearrow
$\nearrow$
\searrow
$\searrow$
\swarrow
$\swarrow$
\nwarrow
$\nwarrow$
\leadsto
$\leadsto$
Flèches sur les symboles
\hat{a}
$\hat{a}$
\check{a}
$\check{a}$
\tilde{a}
$\tilde{a}$
\grave{a}
$\grave{a}$
\dot{a}
$\dot{a}$
\ddot{a}
$\ddot{a}$
\bar{a}
$\bar{a}$
\vec{a}
$\vec{a}$
\acute{a}
$\acute{a}$
\breve{a}
$\breve{a}$
\mathring{a}
$\mathring{a}$
\widehat{ABC}
$\widehat{ABC}$
\widetilde{ABC}
$\widetilde{ABC}$
\overrightarrow{AB}
$\overrightarrow{AB}$
\overleftarrow{AB}
$\overleftarrow{AB}$
\overleftrightarrow{AB}
$\overleftrightarrow{AB}$
\underrightarrow{AB}
$\underrightarrow{AB}$
\underleftarrow{AB}
$\underleftarrow{AB}$
\underleftrightarrow{AB}
$\underleftrightarrow{AB}$
Autres
\dots
$\dots$
\cdots
$\cdots$
\vdots
$\vdots$
\ddots
$\ddots$
\hbar
$\hbar$
\imath
$\imath$
\jmath
$\jmath$
\ell
$\ell$
\Re
$\Re$
\Im
$\Im$
\aleph
$\aleph$
\wp
$\wp$
\forall
$\forall$
\exists
$\exists$
\mho
$\mho$
\partial
$\partial$
\prime
$\prime$
\emptyset
$\emptyset$
\infty
$\infty$
\nabla
$\nabla$
\triangle
$\triangle$
\Box
$\Box$
\Diamond
$\Diamond$
\bot
$\bot$
\top
$\top$
\angle
$\angle$
\surd
$\surd$
\diamondsuit
$\diamondsuit$
\heartsuit
$\heartsuit$
\clubsuit
$\clubsuit$
\spadesuit
$\spadesuit$
\lnot
$\lnot$
\flat
$\flat$
\natural
$\natural$
\sharp
$\sharp$
Polices d'écriture
\mathbb{RQSZ}
$\mathbb{RQSZ}$
\mathcal{RQSZ}
$\mathcal{RQSZ}$
\mathfrak{RQSZ}
$\mathfrak{RQSZ}$
\mathrm{3x^2 \in R}
$\mathrm{3x^2 \in R}$
\mathit{3x^2 \in R}
$\mathit{3x^2 \in R}$
\mathbf{3x^2 \in R}
$\mathbf{3x^2 \in R}$
\mathsf{3x^2 \in R}
$\mathsf{3x^2 \in R}$
\mathtt{3x^2 \in R}
$\mathtt{3x^2 \in R}$
Formattage
\frac{a}{b}
$\frac{a}{b}$
a^{b}
$a^{b}$
a_{b}
$a_{b}$
\binom{a}{b}
$\binom{a}{b}$
Matrices
\begin{matrix}
1 & 2 & 3\\
a & b & c
\end{matrix}
$\begin{matrix}1 & 2 & 3\\
a & b & c
\end{matrix}$
\begin{pmatrix}
1 & 2 & 3\\
a & b & c
\end{pmatrix}
$\begin{pmatrix}1 & 2 & 3\\
a & b & c
\end{pmatrix}$
\begin{bmatrix}
1 & 2 & 3\\
a & b & c
\end{bmatrix}
$\begin{bmatrix}1 & 2 & 3\\
a & b & c
\end{bmatrix}$
\begin{Bmatrix}
1 & 2 & 3\\
a & b & c
\end{Bmatrix}
$\begin{Bmatrix}1 & 2 & 3\\
a & b & c
\end{Bmatrix}$
\begin{vmatrix}
1 & 2 & 3\\
a & b & c
\end{vmatrix}
$\begin{vmatrix}1 & 2 & 3\\
a & b & c
\end{vmatrix}$
\begin{Vmatrix}
1 & 2 & 3\\
a & b & c
\end{Vmatrix}
$\begin{Vmatrix}1 & 2 & 3\\
a & b & c
\end{Vmatrix}$
Carte d'exemple
Passer
Suivante
Essaye LaTeX dans le navigateur
Entre un peu de code pour voir ce que ça donnerait sur une carte :